Feeding in the Setting of Therapeutic Hypothermia for Neonates with Hypoxic Ischemic Encephalopathy
Madison Delmendo, UW Nutritional Sciences Program, MS-Nutrition Student & Dietetic Intern

Background
Therapeutic hypothermia (TH) has improved mortality and decreased neurologic disability in neonates with HIE. While TH has become routine in NICU’s globally, there is no consensus the optimal nutrition support method during cooling.

- NPO orders common in US with use of PN as nutrition support.
- Rational: hypoxia decreases intestinal perfusion, raising risk for necrotizing enterocolitis.

Summary of Current Evidence
- No evidence exists supporting this association.
- Emerging evidence suggests enteral feeding during TH reduces time on PN, time to full oral feeds, and length of stay.
- Studies have also found neonates given enteral feeds are more likely to be exclusively breastfeeding at discharge than those made NPO.
- No increase risk in GI morbidity, systematic infection, or mortality reported.
- Current studies are retrospective with small sample sizes.

### Case Study
- Term male, Baby Z, born without audible heartbeat. Resuscitated and found to have a cord gas of 6.8.
- Transferred to SCH where an EEG was consistent with mild-to-moderate HIE.
- Cooled to 33-34℃ via a cooling blanket at 6 hours of life.
- NPO and fluid restricted due to hyponatremia.
- PPN initiated on day three of life, only 35% of goal calories and 65% goal protein delivered
- Rewarmed on day four and allowed breastfeeding ad lib.
- PPN discontinued the following day.

Current evidence is not strong enough to recommend enteral feeds for all HIE neonates. Trophic enteral feeds should be considered a case-by-case basis with a feed volume ≤ 20 mL/kg/hr.

### Discussion
- Enteral feeding during TH may pose multiple benefits.
- Reduced PN use lowers risks of central line infections.
- Earlier introduction of breastmilk decreases mortality.
- While current evidence is weak, European NICU’s are already implementing feeds during TH.
- Baby Z represents a neonatal candidate for minimal enteral nutrition due to mild HIE symptoms and absence of GI counterindications.

### Conclusions

![Blood Oxygen Diagram](https://via.placeholder.com/150)

<table>
<thead>
<tr>
<th>Lab</th>
<th>Day 2</th>
<th>Day 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium</td>
<td>125 (L)</td>
<td>128 (L)</td>
</tr>
<tr>
<td>Potassium</td>
<td>9.4* (H)</td>
<td>5.6*</td>
</tr>
<tr>
<td>Chloride</td>
<td>93 (L)</td>
<td>96</td>
</tr>
<tr>
<td>Blood Glucose</td>
<td>93</td>
<td>77</td>
</tr>
<tr>
<td>BUN</td>
<td>16</td>
<td>13</td>
</tr>
<tr>
<td>Creatinine</td>
<td>0.8</td>
<td>0.6</td>
</tr>
<tr>
<td>Phosphorous</td>
<td>4.9* (L)</td>
<td>6.2*</td>
</tr>
<tr>
<td>Magnesium</td>
<td>1.7* (L)</td>
<td>1.7*</td>
</tr>
</tbody>
</table>

* = hemolysis present, level may be artificially elevated.